

The RHIC Experiments

Dr. Edward J. O'Brien Brookhaven National Laboratory

VCI2004, Vienna, Austria February 16-21, 2004

The Relativistic Heavy Ion Collider at BNL

- Two independent rings 3.83 k in circumference
 - 120 bunches/ring
 - 106 ns crossing time
- Maximum Energy
 - $s^{1/2} = 500 \text{ GeV p-p}$
 - $s^{1/2} = 200 \text{ GeV/N-N} \text{ Au-Au}$
- Design Luminosity
 - Au-Au 2x10²⁶ cm⁻²s⁻¹
 - $p p 2x10^{32} cm^{-2}s^{-1}$ (polarized)
- Capable of colliding any nuclear species on any other nuclear species

The RHIC Run History

The RHIC machine performance has been very impressive:

- ➤ Machine is delivering design luminosity(+) for AuAu
- ➤ Collided 3 different species in 4 years
 AuAu, dAu, pp
- →3 energies run•19 GeV, 130 GeV, 200 GeV
- **▶**1st operation of a polarized hadron collider

PHENIX	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot} (sampled)	Data Size
Run1	2000	Au-Au	130	1 μb ⁻¹	10M	3 TB
Run2	2001/02	Au-Au	200	24 μb ⁻¹	170M	10 TB
		Au-Au	19		<1M	
		p-p	200	0.15 pb ⁻¹	3.7G	20 TB
Run3	2002/03	d-Au	200	2.74 nb ⁻¹	5.5G	46 TB
		p-p	200	0.35 pb ⁻¹	6.6G	35 TB
Run4	2003/04	Au-Au	200	80 μb ⁻¹	500M+ ongoin	g 70 TB
		p-p	200	•		

The RHIC Experiments

RHIC Physics Program

Heavy Ion Physics:

- •Quark Gluon Plasma & hot dense nuclear matter
- \triangleright Particle mult., E_T , single particle spectra, particle correlations, vector mesons, strange baryons, heavy quarks, photons (direct & virtual)...

Polarized Protons:

- •Nucleon Spin
 - \triangleright Gluon spin: $\triangle G$, sea quark spin: $\triangle \overline{u}$, $\triangle \overline{d}$. Nucleon transverse spin distr.

Proton-Nucleus:

- Structure function physics
 - ➤Gluon structure function saturation, shadowing, anti-shadowing...

What have the four RHIC experiments (BRAHMS, PHENIX, PHOBOS, STAR) measured at RHIC so far ?

$$\gamma$$
, e $^{\pm}$, μ $^{\pm}$, π $^{\pm}$, π^0 , K $^{\pm}$, K *0 (892), K $_{\rm s}$ 0 , η , p, d, ρ 0 , ϕ , Δ ,

Λ,
$$\Sigma^*$$
(1385), Λ^* (1520), Ξ^{\pm} , Ω , D^0 , D^{\pm} , D^* , J/Ψ 's,

Au on Au Central Collision Event

The BRAHMS Detector

Time Of Flight Wall **BRAHMS Experimental Setup** Multiplicity Arrays Beam-Beam Counters & Zero Degree Calorimeters Mid-Rapidity Spectrometer Time Projection Chamber TOFW -**Drift Chamber** 100 cm Cherenkov Detector TPM2 **MRS** Dipole Magnet D5 TPM1 BB ZDC DX SiMA & TMA D1 11 D2 T2 H1C1 D3 **T4** D4 T5 H2 RICH Forward Spectrometer (FS)

Brahms Particle Identification

$$TIME-OF-FLIGHT m2 = p2 \left(\frac{c^{2}TOF^{2}}{L^{2}} - 1\right)$$

Particle Separation: p_{max} (2 σ cut)=

2σ cut	TOFW	TOF1	TOF2
π / K	2 GeV/c	3 GeV/c	4.5 GeV/c
K /p	3.5GeV/c	5.5GeV/c	7.5 GeV/c

CHERENKOV

RICH: Cherenkov light focused on spherical mirror → ring on image plane

Ring radius vs momentum gives PID π / K separation 20 GeV/c Proton ID up to 35 GeV/c

Brahms Particle Spectra

Top 5% central collisions

The PHOBOS Detector

Silicon Everywhere

137,000 channels in total

Strips and Pads

Hits and Tracks in PHOBOS

Nearly 4π Coverage

Distribution of hits and energy deposition → dN/dη

The STAR Detector

TPC Gas Volume & Electrostatic Field Cage

- •Two-track separation 2.5 cm
- Momentum Resolution < 2%
- Space point resolution ~ 500 mm

Gas: P10 (Ar-CH₄ 90%-10%) @ 1 atm

Voltage: - 28 kV at the central membrane
 135 V/cm over 210 cm drift path

Self supporting Inner Field Cage: Al on Kapton using Nomex honeycomb; 0.5% rad length

Particle ID using Topology & Combinatorics

Secondary vertex:

$$\mathbf{K}_{s} \rightarrow \pi + \pi$$
 $\Lambda \rightarrow \mathbf{p} + \pi$
 $\Xi \rightarrow \Lambda + \pi$ $\Omega \rightarrow \Lambda + \mathbf{K}$
 $\gamma \rightarrow \mathbf{e}^{+}+\mathbf{e}^{-}$

"kinks" $K^{\pm} \rightarrow \mu^{\pm} + \nu$

$$\mathbf{K}^{\pm} \rightarrow \mu^{\pm} + \nu$$

Multi-strange Baryons

Photon and π^0 ID

- The e^+e^- pair from γ conversion
- Large p_T coverage of γ measurement
 - from 50 MeV/c to 4 GeV/c

The STAR electromagnetic calorimeter

Year 2003 barrel EMC

- p+p and d+Au runs at 200 GeV/A
- $-0 < \eta < 1.0$
- Full azimuthal coverage
- 60 modules
- 40 towers/module
 - 21 X₀
 - $(\Delta \eta, \Delta \phi)_{\text{tower}} \sim (0.05, 0.05)$
 - $\delta E/E \sim 16\%/\sqrt{E}$
- Shower max detector
 - Positioned at ~ 5 X₀
 - Larger spatial resolution
 - $(\Delta \eta, \Delta \phi) \sim (0.007, 0.007)$

STAR D*, D0, D± signal

The PHENIX Detector

- > Detector Redundancy
- > Fine Granularity, Mass Resolution
- > High Data Rate
- **➤ Good Particle ID**
- > Limited Acceptance

Charged Particle Tracking:

Drift Chamber

Pad Chamber

Time Expansion Chamber/TRD

Cathode Strip Chambers

Particle ID:

Time of Flight

Ring Imaging Cerenkov Counter

TEC/TRD

Muon ID (PDT's)

Calorimetry:

Pb Scintillator

Pb Glass

Event Characterization:

Multiplicity Vertex Detector (Si Strip, Pad)

Beam-Beam Counter

Zero Degree Calorimeter/Shower Max Detector

Forward Calorimeter

Normalization Trigger Counters

Drift Chamber Central Tracking:

- Jet -chamber anode/cathode structure modified for HI high multiplicity
- Joint Russia/US design & construction
- All Titanium frame
- $\sigma_x = 120 \ \mu m$, two-track sep = 2mm

Central Au Au Event

Tracking Eff vs Mult.

DC Position Resolution

DC wires with kapton wire dividers

Central Tracking: Time Expansion Chamber

e/π Separation

using TR & dE/dx

- 24 TEC Chambers arranged in 4, 6-Chamber sectors
- Used for tracking and PID (dE/dx,TR). $\sigma_x = 260 \mu m$
- dE/dx: $e/\pi = 5\%$ at 500 MeV/c (4 pls), $e/\pi = 1.5\%$ (6pls) Important for momentum resolution $p_T > 4.0$ GeV/c
- TR polypropylene fiber/foam radiator packs installed

-200

-0.4 -0.2 -0 0.2 0.4 0.6 0.8 TEC Space Resolution, cm

PHENIX Global Coordinates (cm)

Particle ID Detectors: RICH

- Gas radiator CO_2 , e/π separation for $p < 5 \; GeV/c$
- 5120 PMTs sensitive to single photoelectrons, $\sigma_t < 1$ ns
- Ring resolution ~1° in both Φ and η

Charm signal measured in PHENIX Central Arms

Energy/momentum (E/p)

Mass Resolution ~ 100 MeV

Aerogel Array

Aerogel Sector in PHENIX

- Aerogel is SiO₂-based material
- •Index n= 1.0114
- Additional TOF (mRPC) array to be installed behind Aerogel
- •Particle ID to > 8 GeV/c for π , K, p

160 Cells: 16 x 10

Aerogel Cell (11x22x11 cm³)

Aerogel in here

Particle ID Detectors: EM Calorimeter

- 60 m² of calorimeter (6 Sectors Pb Scin, 2 Sectors PbGlass)
- Very Fine Segmentation .01 x .01 ($\Delta \Phi \times \Delta \eta$)
- Timing $\sigma_t \sim 340$ ps Pb Scin $\sigma_t \sim 600$ ps Pb Glass
- $\sigma_E = 10\%/\sqrt{E+6.5\%}$ Pb Scin, $\sigma_E = 8.5\%/\sqrt{E+9.0\%}$ Pb

24,768 channels total, all PMTs [1-3 GeV/c]

PHENIX Muon Arms

- 3 CSC tracking stations/ Muon spec. arm
- Each CSC station has a pos. resolution of σ_v =100 μ m
- 20k elec, channels/ arm
- 5 layers of steel absbr plate interleaved w/ 5 layers of larocci tubes (2x,2y 4plns/layer)
- Active cross section of each wall 10m x 10m

What is in the Future for the RHIC Experiments?

Expect RHIC 10X luminosity upgrade by 2010-2012.

Need to upgrade to exploit new physics discoveries and to handle increased luminosity.

- Si Vertex detectors for tracking and displaced vertices
- GEM technology
 - micro-TPC's
 - Hadron-blind detectors (GEM's with CsI doping)
- More calorimeter coverage
 - Both EM and hadronic
- Additional Time of Flight
 - mRPC's for both PID and triggering

PHENIX Detector Upgrade

partner positron needed for rejection

Hadron-blind Detector

- •Triple-GEM w/ Csl doping.
- CF4 radiator gas

Silicon Vertex Tracker (VTX)

Pixel barrel Strip barrels Endcap Pads

Forward Upgrade Components

PHENIX

- Endcap Vertex Tracker
 - W-silicon (20-50 X/X0)
 - silicon pixel detectors
- Nosecone EM Calorimeter

 γ, γ -jet, W, π^0, η, χ_c :

- U-tracker (MuTr or new)
- D-tracker (timing with RPC's?)

W and quarkonium: improved μ-trigger rejection

Multigap Resistive Plate Chamber

MRPC Technology developed at CERN

Read out pad size: 3.15cm×6.3cm

gap: 6×0.22mm

95% C₂H₂F₄ 5% Iso-butane

3800 modules, 23,000 readout chan. to cover TPC barrel

Silicon Vertex Detector

Thin stiff ladder concept

Integration volume and rapid insertion/removal being studied using modern 3-D modeling tools.

Mechanical and integration issues are being addressed:

Gas Electron Multiplier

Used for micro-TPC readout

A micropattern structure produced in 50µm thick copper clad kapton using lithographic techniques. **55μm holes on ~140μm centers** Gain up to ~10³ for single foil

3M Foil (J. Collar) Photo – Bo Yu, BNL

Conclusion

- RHIC is in the middle of its fourth year of physics runs
- The RHIC accelerator is performing very well. It has reached its design luminosity in AuAu and is delivering a broad selection of beam species and energies to the experiments.
- There has been significant physics production to date. The variety of physics results is remarkable.
 - AuAu, pp, dAu data has been used to address physics topics of:
 - QGP and hot, high density matter
 - Spin Structure of the proton (A_{LL}, single spin asymmetries)
 - Structure function physics (especially at high gluon densities)
- Planning for Upgrades to the large RHIC experiments has started. R&D has begun.
- We have a lot to do in the next few years

